Assessment of Arterial Reflection Markers using an A-Mode

Rahul Manoj¹, Raj Kiran V¹, Nabeel P M², Mohanasankar Sivaprakasam^{1,2} and Jayaraj Joseph¹

¹ Indian Institute of Technology Madras, Chennai, India

compute the reflection markers (RM, RI) using a multi-Gaussian decomposition

Ultrasound Device

(MGD) based wave separation analysis (WSA) algorithm

To compare the agreement of

with clinically relevant

reflection markers (RM, RI)

A-Mode ultrasound device used for acquiring diameter waveforms from Carotid Artery

Subject Demography

Subjects: 100 (37 male/63 female)

Age: 17 to 83

SBP: 79 to 220 (mmHg) DBP: 47 to 97 (mmHg)

Normotensive: 50 Subjects Hypertensive: 50 Subjects

² Healthcare Technology Innovation Centre – IIT Madras, Chennai, India

Significant correlation (r > 0.5, p < 0.0001) between RM of MGD Model with the stiffness</p> markers: β, Ep, AC, PWV & Alx

RM and RI were able to screen between normotensive & hypertensive subjects

The MGD based WSA on diameter scaled pressure waveforms has enabled quantification of reflection markers without the need for any measured pressure & flow measurements